Optimal Stochastic Search and Adaptive Momentum
نویسندگان
چکیده
Stochastic optimization algorithms typically use learning rate schedules that behave asymptotically as J.t(t) = J.to/t. The ensemble dynamics (Leen and Moody, 1993) for such algorithms provides an easy path to results on mean squared weight error and asymptotic normality. We apply this approach to stochastic gradient algorithms with momentum. We show that at late times, learning is governed by an effective learning rate J.tejJ = J.to/(l f3) where f3 is the momentum parameter. We describe the behavior of the asymptotic weight error and give conditions on J.tejJ that insure optimal convergence speed. Finally, we use the results to develop an adaptive form of momentum that achieves optimal convergence speed independent of J.to.
منابع مشابه
Decision making in forest management with consideration of stochastic prices
The optimal harvesting policy is calculated as a function of the entering stock, the price state, the harvesting cost, and the rate of interest in the capital market. In order to determine the optimal harvest schedule, the growth function and stumpage price process are estimated for the Swedish mixed species forests. The stumpage price is assumed to follow a stochastic Markov process. A stoch...
متن کاملMarket Adaptive Control Function Optimization in Continuous Cover Forest Management
Economically optimal management of a continuous cover forest is considered here. Initially, there is a large number of trees of different sizes and the forest may contain several species. We want to optimize the harvest decisions over time, using continuous cover forestry, which is denoted by CCF. We maximize our objective function, the expected present value, with consideration of stochastic p...
متن کاملDeveloping Self-adaptive Melody Search Algorithm for Optimal Operation of Multi-reservoir Systems
Operation of multi-reservoir systems is known as complicated and often large-scale optimization problems. The problems, because of broad search space, nonlinear relationships, correlation of several variables, as well as problem uncertainty, are difficult requiring powerful algorithms with specific capabilities to be solved. In the present study a Self-adaptive version of Melody Search algorith...
متن کاملUsing Curvature Information for Fast Stochastic Search
We present an algorithm for fast stochastic gradient descent that uses a nonlinear adaptive momentum scheme to optimize the late time convergence rate. The algorithm makes effective use of curvature information, requires only O(n) storage and computation, and delivers convergence rates close to the theoretical optimum. We demonstrate the technique on linear and large nonlinear backprop networks...
متن کاملStochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993